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ABSTRACT 

Longitudinal vibration of a flexible liquid-filled cylinder was 
studied analytically and experimentally. 
correlated satisfactorily with analysis of the system. 
presented in  terms of predicted and measured pressure  amplitudes as 
well a s  the acceleration levels required to produce bubble formations. 
Knowledge of the pressure distribution enables one to estimate the 
vibration limits for  which the fluid rem.ains entirely in  the liquid state 

Experimental observations 
Results a r e  
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PRESSURE DISTRIBUTION AND BUBBLE FORMATION 
INDUCED BY LONGITUDINAL VIBRATION OF 

A FLEXIBLE LIQUID-FILLED CYLINDER 

R. J. Schoenhals* 
T. J. overcamp" 

SUMMARY 

Oscillating pressures  in  a Plexiglas cylinder containing 
methanol were measured as it was vibrated parallel  to i ts  axis. 
Acceleration levels required to produce bubble formations and the 
locations of these formations were determined. 
resul ts  agree closely with predictions obtained from an analysis of 
the system. However, several  discrepancies warrant further 
investigation. 

These experimental 

INTRODUCTION 

The interaction of fluid dynamics and flexible s t ructures  is 
of considerable practical  interest  in liquid propellant rocket technology. 
Cryogenic propellant storage tanks and lines a r e  known to undergo 
severe longitudinal vibration during flight. Such a n  environment can 
give r i s e  to two-phase fluid conditions (Ref. 1) that can seriously 
impede the performance of the propellant systems that a r e  required 
to provide rapid fluid t ransfer  (Ref. 2). This study w a s  undertaken to 
develop an understanding of the onset of these two-phase conditions. 

.l. TAssociate Professor,  School of Mechanical Engineering, 
Purdue University, Lafayette, Indiana, NASA-ASEE Summer Faculty 
Fellowship Program, June-August 1965. 

**NASA summer student employee, Michigan State University, 
Eas t  Lansing, Michigan. 
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. Time dependent pressures  were predicted from an  analysis 
of a flexible liquid-filled cylinder under the influence of longitudinal 
vibration. These predictions were compared with measurements 
obtained using a Plexiglas cylinder containing methanol. Knowledge 
of the pressure distribution makes it possible to estimate the limiting 
conditions of vibration for which the fluid remains in the liquid state. 
Beyond these threshold conditions a two-phase fluid state is reached 
in which bubbles a r e  formed. 
predict the vibration conditions required to produce bubbles and the 
locations of initial bubble formation. These predictions were 
compared with experimental measurements and observations. 

Results of the analysis were used to 

c 

This report  is mainly concerned with dynamic conditions 
dominated by single-phase fluid behavior, and the results appear to 
be valid for  vibration levels up to those required to bring about the 
onset of bubble formation. 

SURVEY OF LITERATURE 

. 
A sketch of the system investigated is shown in FIG 1. 

Configurations such as this were previously studied by Bleich (Ref. 3). 
Bleich's investigation is fairly general, because two-dimensional 
effects a r e  considered, and the effect of liquid compressiblity is 
included in the solution of one of the problems discussed. 
Blount, and F r i t z  (Ref. 1) experimentally investigated the bubble 
formations induced by longitudinal vibration of Plexiglas cylinders 
( F I G  2). The vibration level required to produce bubbles w a s  de te r -  
mined as a function of frequency for several  containers and for various 
liquid heights. The experimental and analytical predictions given in 
this report  a r e  in good agreement with the observations reported by 
Ponder e t  al. 

Ponder, 

Bleich (Ref. 4), Baird (Ref. 5) and Buchanan, Jameson, and 

This phenomenon is of great  interest  in the study of two- 
Oedjoe (Ref. 6) studied the migration of gas bubbles in vibrating liquid 
columns. 
phase conditions. 

The references cited here represent those which a r e  most 
pertinent to the investigation. 
available l i terature  related to this work would, of course,  include 
many additional references.  

A comprehensive discu.ssion of all the 

2 
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SIMPLIF’IED ANALYTICAL MODEL 

F o r  ease of physical interpretation and comparison of 
predicted and experimental results,  a one-dimensional model w a s  
analyzed. The following assumptions were imposed: 

c 

1. 

2. 

3, 

4. 

5. 

6 .  

7. 

8. 

9. 

The fluid behavior is described in  t e rms  of longitudinal 
motion. 

The fluid remains in  the liquid phase with uniform prop- 
e r t ies  throughout the volume. 

Both the fluid and the flexible cylindrical container remain 
in the elastic range under the loads encountered. 

Dissipative effects in the fluid and in the cylindrical wa l l  
a r e  absent.’ 

The liquid remains in contact with the cylindrical wal l  at 
all times. 

The deformation of each c ross -  section of the cylindrical 
wal l  is purely radial, and only the hoop s t r e s s  generated 
by the local radial deformation is significant. 

The cylindrical wa l l  is thin, and its inertial  effect is 
negligible. 

Time dependent pressures  in the liquid are not transmitted 
into the gas in the ullage space above the liquid.’ 

Inception of bubble formation occurs at a point in the liquid 
when the minimum instantaneous pressure  occurring at 
that location decreases to a threshold value, PT. 

The effect of damping is illustrated in  Appendix B. 

This assumption is easily justified on the basis of the la rge  
difference in the characterist ic impedances (Ref. 7 )  of the liquid and 
gas  phases, pr imari ly  because the density of the gas is very smal l  in 
comparison with that of the liquid. 

3 



The equation of motion for  the fluid (see Appendix A) is 

where Y(x, t) is the longitudinal displacement of a circular  c ros s -  
sectional fluid layer at location x f rom its equilibrium position under 
zero  load conditions. The boundary conditions a r e  

iw  t 
- E , ~ ( o ,  ax t) = P,, Y(L, t) = YLe . 

The solution of the wave equation (1) is composed of two components; 
a steady component, Yo(x), and an  oscillating component, Yl(x, t), so 
that Y(x, t) = Yo(x) + Yr(x, t). The equations and boundary conditions 
for  Yo  and Y1 a r e  . 

c 2 . 7 t g = o  dZyQ 
dx (3 )  

(4) 
dY 

-Ex dx 
-O (0) = P,, Yo(L) = 0, 

and 

Addition of equations (3)  and (5) yields the original wave equation ( l ) ,  
and addition of the boundary conditions (4) and (6) gives results consis- 
tent with the original boundary conditions (2). 

Adding the solution of equations (3)  and (4) to that for equations 
(5) and (6) gives 

' This condition i s  imposed in accordance with assumption 8. 

4 
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P U  Y(x, t) =7 (L - x) + 
. .  ’. (7) 

L C J  

a y  
ax 

The pressure distribution is obtained f rom P = -Ex-- which gives 

where gL is the acceleration amplitude of the base. 
component of pressure a t  any depth x consists of two parts,  the ullage 
pressure,  Pu, and the hydrostatic pressure,  pgx. 

The steady 

wx ox W L  
A t  very low frequencies - and cos - -.c 1. (f << l), s i n c  --c - C 

C 

F o r  this condition the oscillating component of pressure,  like the hydro- 
static pressure,  is linearly related to the depth and 

P = P, + p(g + gLeiwt)x (9) 

In this case the minimum instantaneous pressure at the bottom of the 

container approaches zero when- gL = ( 1 + - p>). The corresponding 

minimum instantaneous pressure at other points in the system is given 

by Pu (1 - t). It can be seen from this example that very low instan- 

taneous pressures  in the system are obtained only if E exceeds unity. 

In addition, the lowest instantaneous minimum pressure  occurs at the 
bottom of the container. 

g 

At  higher frequencies (% > 2). the amplitude of the oscillating 

pressure  is periodic in x, and the position of the lowest minimum instan- 
taneous pressure  moves upward from the cylinder base. 
of conciseness and generality, equation (8) is rewritten in dimensionless 
form as 

F o r  purposes 

5 



For cases in which the amplitude of the oscillating pressure  

has more than one maximum ( 3 -  3;) the lowest minimum instan- 

taneous pressure in the system occurs close to the point 5 2 ~  = 7 ,  
provided that - 
taneous pressures at  points far ther  from the surface and close to 
other maxima of the amplitude te rm a r e  larger  due to the effect of 
the hydrostatic pressure (note the x /L  t e rm in equation (10)). 

X l T  

i s  somewhat larger  than unity. Minimum instan- 
G I c o s n  I 

For  convenience the amplitude of the time varying pressure,  
A P ,  is obtained in dimensionless form from equation (10) as 

. . . , and infinite pressure  TF 3TF 51T 
2 ,  2 ,  2 ,  Resonance occurs for  !2 = - - - 

amplitudes a r e  predicted by equation (1  1) for  these frequencies. 
unacceptable resul t  occurs due to assumption 4 and is prevented in  the 
rea l  physical system by the presence of friction and possibly by the 
non-linear behavior of the system under large deformations. 
effects a r e  not accounted for by equation ( l ) ,  but a r e  discussed in 
Appendix B. 

This 

These 

T o  initiate bubble formation in  a vibrating liquid, the local 
pressure  level must be reduced to a sufficiently low value during a 
portion of the vibration cycle. 
assumed that bubbles wi l l  form at a particular location i f  the minimum 
instantaneous pressure  falls below some threshold pressure  value, 
PT, (assumption 9). 

F o r  purposes of simplicity, it is 

For  pure liquids it might be expected that PT would be close 
to the saturation pressure at the liquid temperature. This idea repre-  
sents a considerable oversimplification. 
far more complicated (Ref. 7) because the threshold pressure  required 
to produce bubbles is dependent upon frequency, surface tension, 
dissolved gas properties,  and a number of other factors. 

In reality the situation is 

. 

. 
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According to previous discussion in connection with equations 
1 .  (8) through (IO), the minimum pressure,  Pm, occurs a t  the bottom of 

the cylinder and is given by 

B B for  n< - provided that G > 1. 

pres su re  occurs close to h- - - and is approximated by 

Similarly, for  52 > - the minimum 2 
X T I  

2 

L - 2  

The condition for inception of bubble formation in the system 
is  obtained by setting Pm = PT in equations (12) and (13) which now 
a r e  rewrit ten as 

and r -I 

CT represents  the threshold acceleration level required to produce 
bubble formation. 
to produce bubble formation at the bottom of the cylinder for C > 1 

when R < 1, while equation ( 1  5) gives the level required to produce 

Equation (14) gives the acceleration level required 

B 

C L 
x l l  when st > lr 2 (provided that -- ’> l). bubbles close to - -- L -2a 

7 



EXPERIMENTAL DETERMINATION O F  OSCILLATING PRESSURES 

A Plexiglas cylinder (4-inch diameter by 3/8-inch thick w a l l  
by 26 inches long) closed at its lower end w a s  mounted on an  electro- 
dynamic shaker. 
tube wall flush with the inner surface S O  that the liquid pressures  
could be measured. 
6, 9, and 12 inches from the base. A schematic diagram of the experi- 
mental apparatus is given in FIG 3. 

Four pressure  transducers were installed in the 

These transducers were installed at heights of 1, 

Methanol w a s  introduced into the cylinder, and the system w a s  
vibrated at levels low enough to prevent any bubble formations. 
presence o r  absence of bubbles could be easily viewed due to the t rans-  
parency of the Plexiglas container. When bubbles formed, the vibration 
was stopped until the bubbles disappeared. 
slowly increased, but w a s  kept at a level low enough so that the bubbles 
did not reform. Thus, all of the measurements and observations 
discussed in this section a r e  associated with vibration of a liquid 
column in the absence of bubbles. 

The 

The vibration was then 

The pressure  signals were amplified and displayed on a four 
channel oscilloscope either simultaneously or  one at a time. 
making pressure amplitude measurements,  the la t ter  w a s  more satis- 
factory, because higher gain could be used to expand a single p re s su re  
t race  over a large par t  of the available range on the oscilloscope screen. 
The results of these measurements a r e  shown in F IG 4a to 4f with the 
analytical predictions from equation (11). Liquid heights of 12, 18, 
and 24 inches were used to give a range of x / L  values for the four 
fixed probe positions. 

F o r  

Al l  of the results show some scat ter ,  a trend that became 
more  pronounced as frequency increased. 
uted to the method of plotting the results for comparison with equation 
( l l ) ,  which does not account for dissipation effects. No doubt other 
effects, not accounted for by the analysis, had their influence in the 
operation of the actual system from which the measurements were 
taken. For  example, the one-dimensional longitudinal wave behavior 
(assumption 1) and the absence of w a l l  inertia effects (assumption 7) 
give way to more complicated patterns of motion (Ref. 3 and 8) a s  
frequency is increased. 

This can be partially a t t r ib-  

c 
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Under conditions of resonance, equation (1 1) predicts infinite 
p re s su re  amplitudes. F o r  these cases (FIG 4b and 4 f ) ,  tbe analytically 
determined mode shapes a r e  given, and the curves a r e  labeled wit? the 
symbol CD to indicate ti>at they a r e  not  drawn to  scale. In botil cases 
the experimentally determined mode shapes a r e  in agreement with the 
predicted ones. 

F o r  frequencies somewhat removed from resonant conditions 
(FIG 4a, c, d, and e), the measured pressure  amplitudes tend to be 
la rger  than predicted. 
frequency illustrated (FIG 4a). 

The deviation is fair ly  small  for  the lowest 

FIGURE 5 shows the simultaneous display of signals f rom the 
four p re s su re  transducers a s  they appeared on the oscilloscope screen 
for  the 18-inch high liquid column. Proceeding from top to bottom, the 
four p re s su re  t races  correspond to x/L values of 0 . 3 3 ,  0.50, 0.67, 
and 0.95. 

a r e  in phase (FIG 4b). F IG 5b corresponds to a higher frequency Q=- . 
F o r  this situation a pressure  node occurs close to - = 0.67 (FIG 4f). The 

two upper t races  a r e  in phase with each other while the third one indicates 
an extremely small  p ressure  amplitude in accordance with its location 
close to the pressure  node. 
upper two as would be expected from FIG 4f. 

In FIG 5a the frequency is low enough so that all four signals 

X ( 3 
L 

The lower t race  is 180" out of phase with the 

f L  it was necessary to obtain the wave 
C Y  

L 
W E =  2a- Since S2 = 

velocity C for  the particular system used in order  to evaluate dimen- 
sionless frequency values for various combinations of vibration frequency 
and liquid column height. 
f rom the following approximate property values. 

An estimate of the wave velocity can be obtained 

Density of Methanol (Ref. 9)250 lb/ft3 
Bulk Modulus of Methanol (Ref. 10) M 1.86 x lo5  psi 
Modulus of Elasticity of Plexiglas (Ref. 11) 'VN 2 x 10' psi  

Based on these figures the sound velocity fo r  methanol is 

However, the wave  velocity, C, should be lower than this 

/=in accordance with equation (A10). This leads 

value of C = 1250 fps fo r  the experimental system used. 
D 

by a factor of 

to a calculated 

9 



. 
Since the liquid bulk modulus and the modulus of elasticity of 

Plexiglas a r e  subject to considerable variation, the calculation given 
above should not be expected to yield a very reliable resul t  in t e rms  of 
the actual system performance. Because of this, C was determined 
experimentally by varying the frequency until the first resonant mode 

was obtained (Q = 3. The mode shape w a s  readily verified by means 

of the pressure signals (FIG 4b). 
sound level within a very fine resonant frequency band made it possible 
to tune the system to this condition very easily. 
frequency obtained was very close to 200 cps. Therefore, since 

fL IT Q = Z r - = -  

previously calculated value of 1250 fps  provided a reasonably good 
estimate f o r  C. 

The dibtinct increase in audible 

With L = 18", the 

C = 4 f L  = 1200 fps for  the actual system. Thus, the c 2 '  

In summary, the simplified analysis predicted the qualitative 
behavior exhibited by the experimental system. In addition, the order  
of magnitude of the calculated pressures  is in agreement with the 
experimentally measured values (except for  resonant conditions). 
However, a quantitative comparison of predicted and measured pressure 
amplitudes reveals a fairly large percentage of deviations between the 
two fo r  some of the cases studied. 

1 

* 
OBSERVED BUBBLE FORMATIONS 

Initiation of bubble formatioil in a Plexiglas cirlinder containing 
methanol was investigated. Fo r  eac'r case obcerved, the vibration level 
was slowly increased until bubbles were sigiited. 
of interest were the location d t  which initial bubble foriiiations occurred 
and the vibration level required to prod7ice t h e s e  formations. 
results a re  discussed in te rms  u f  t h e  simplified dnalytic<i! model given 
previously . 

Tile two major item. 

The 

FIGURES 6a and 6b i l lustrate system behavior that was typical 
According to the simplified analytical model, at the l o w e r  frequencies. 

bubbles would be expected to form initially at the cylinder bottom. 
did occur, but it w a s  often accompanied by considerable bubble forma- 
tion at the liquid surface when sloshing w a s  present. 
migrated rapidly to the bottom after formation. 

This 

These bubbles 
The upper bubble 

L 
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formation region usually would propagate downward, slowly at first 
and then very rapidly. 
r ing simultaneously at the bottom (since the pressure  amplitude was 
l a rges t  there - see FIG 4a) and at the top due to sloshing. 
shows the rapid growth of these formations that accompanied the 
violent downward movement of the upper bubble formation region. 
Although bubble formation a t  the bottom is predicted by the simplified 
analytical model, sloshing and bubble formation at the top are not. 
This complicated surface phenomenon, which occurred at low frequen- 
c ies  in  the present investigation, is in agreement with some of the 
observations reported by Bleich and by Buchannan, et al. 

F IGURE 6a shows initial bubble formations occur- 

FIGURE 6b 

FIGURES 6c, 6d, and 6e show typical initial bubble formations 
X lT 3Tr 
L 2 2 a t  - values close to 1.0, 0.5 and 0 .33  for S2 = -, TI and - , respectively. 

These a r e  the locations of maximum pressure  amplitude (FIG 4b, 4d and 
4f) and minimum instantaneous pressure,  Pm, for these frequencies 
according to the simplified analytical model. 

31T 
When S2 = - 2 ’  

there a r e  two locations having the same predicted 
~ 

X X 
maximum pressure  amplitude (F IG 4f), - = 0 . 3 3  and - = 1.0.  However, L L 
the predicted minimum instantaneous pressure ,  P,, in the system 
occurs at the upper location, because the hydrostatic pressure  is lower 
there  than at the bottom. This can be verified from equation (10) which 
contains a hydrostatic component of pressure  proportional to depth 
below the surface. Since the predicted minimum system pressure  

occurs close to - = 0 . 3 3 ,  i t  would be expected that bubbles would form 
L 

a t  that location f i rs t ,  and not at the bottom. This w a s  confirmed in 
several  experiments duplicating these conditions, and the formation 

of one o r  two small  bubbles at - = 0 .33  usually occurred a s  illustrated 

in FIG 6e. 

X 

X 

L 

On the other hand, the magnitude of the hydrostatic p re s su re  
w a s  fa i r ly  small  for the system observed in  the present investigation, 

and the apparent preferential location of - = 0. 33 as opposed to - = 1. 0 

did not always dominate. 
occurred simultaneously at both locations. 
appear at the bottom before any bubble activity was sighted at 

X X 

L L 

Only once did bubbles 
Occasionally initiation of bubble formation 



X X - -  - 0. 33;  however, a single small  bubble formed at - = 0. 33 and 
L L 
started to r i s e  to the surface just  as the system w a s  photographed 
(FIG 6f). The two bubble formations at the bottom, which actually 
formed first, a r e  clearly visible. The smaller  bubble rising toward 
the surface is not as noticeable. 

3rr = - 
2 

that the hydrostatic pressure  effect  caused the upper p re s su re  ampli-  
tude maximum to be the preferred location for initial formation of 
bubbles. However, this hydrostatic effect w a s  small  and did not 
always prevent initial bubble formation at the location of the lower 
p re s su re  amplitude maximum (at the cylinder bottom). 

It was concluded from the many observations made for 

The photographs in F I G  6a through 6f indicate how the location 
The 

At 

of initial bubble formations is affected by variations in frequency. 
threshold acceleration level, GT, w a s  obtained with the same system 
by slowly increasing the vibration level until bubbles were sighted. 
this point the acceleration level w a s  read f r o m  the vibration meter  
(FIG 3).  
reported d a t a  (Ref. 1) and a r e  plotted in FIG 7 and 8. 
used in making these observations, the ratio of ullage pressure  (atmos- 

pheric) to hydrostatic pressure  ?t the cylinder base w a s  - = 25. 

The experimental results obtained a r e  comparable to previously 
F o r  the system 

P U  

PgL 

FIGURE 7 shows a comparison of the data with the analytical 
prediction for  the low frequency range. 
plotted using equations (14) and (15). It w a s  assumed that the threshold 
pressure ,  PT, w a s  equal to the fluid saturation pressure ,  Ps, (Ref. 9) 
for  the ambient temperature conditions existing at the time the experi-  

ments were conducted. 

25(1 - 0.2) = 20. 
(14) to generate the plot indicated by the solid line in FIG 7. 
predicted and experimental GT curves drop sharply in the vicinity of 

the first resonant frequency (. = 5 )  while exhibiting la rger  values on 

either side of this frequency. 
a zero  threshold value as does the analytical curve because of damping 
in the system. 
analytical model (assumption 4) which predicted a zero  value for CT 

The analytical resul t  w a s  

- pT ps This gave - - - - = 0.2,  and - 
p u  p u  PgL p' t-2)- 

The latter value w a s  inserted into equations ( 1 3 )  and 
Both the 

The experimental curve does not reach 

This effect w a s  not accounted for  in the simplified 

8 
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, 

. 
at resonance. 
GT curve, the agreement of this result with the experimental data is  
considered very favorable in the low frequency range. 

In view of the method used to generate the predicted 4 

TT F o r  frequencies somewhat in excess of R = - the analytical 2 '  
prediction gave results considerably la rger  than the experimentally 
measured GT values if PT were assumed equal to Ps. 
had been expected, because it was not realist ic to presume that 
threshold pressure  is dominated by the fluid saturation pressure  for 
all values of frequency, particularly since the liquid used for  the 
experiments w a s  not degassed. 
large amounts of previously dissolved gas. 
because the bubbles would r i se  slowly to the surface due to buoyancy 
following immediate termination of vibration after the bubbles had 
formed. Vapor bubbles would have collapsed instantly. 

This deviation 

The bubbles that formed contained 
This w a s  apparent 

Experimental data obtained over a wide frequency range a r e  
given in F I G  8. A plot of results obtained from the analytical model 
is a l so  shown. 

a value of 15 for (2L)(l - - 2). With - = 25, this 

This plot w a s  made using equations (14) and (15) with 
p u  
P& 

P T  
P U  

corresponds to - = 0.4 and a threshold pressure  of about 5.7 psi. 

The choice of this single threshold pressure  level (approximately 
twice the fluid saturation pressure) is  somewhat a rb i t ra ry  since 
PT in reality is probably frequency dependent as mentioned above. 
However, the use of a fixed PT value to obtain a single analytically 
derived curve makes it easier  to compare results of the analysis 
with data obtained experimentally.' 

P T  A smaller value of 7 fits the experimental data better up 
Tr YU P T  

p u  
to R = z as shown in F IG 7, and a slightly la rger  value of -would 

TT 
produce more  of a favorable comparison for  Q greater  than - 2. 

13 



The similari t ies in the predicted and experimentally obtained 
Both undergo distinct decreases a t  G T  curves a r e  apparent in FIG 8. 

Tf 31T 
2 2 the two resonant frequencies, R = - and -, and exhibit larger  values 

on either side of these two frequencies. Due to damping, the experi-  
mental curve never reaches a zero threshold value. 
curve, on the other hand, touches the horizontal axis at both resonant 
frequencies. 
ical curve from R = 2. 5 to 4. 
measured pressure amplitudes in this range were generally larger  
than those predicted by the analytical model (FIG 4c and 4d). Another 
factor that may explain the deviation in this range i s  that the actual 
threshold pressure  of the fluid may vary considerably with frequency, 
a s  was previously mentioned. 

The analytical 

The experimental curve is considerably below the analyt- 
This is in agreement with the fact  that 

The distinct dip in the experimental GT curve in the vicinity 
of a = TT does not agree with the trend predicted from the analysis. 
Possible explanations a re :  

(a) The simple one-dimensional analytical model may not be 
very accurate in this frequency range. 

(b) The damping properties of the Plexiglas container may 
have undergone severe variations within this small 
frequency range in a manner which i s  typical of some 
polymers (Ref. 12). 

(c) The actual threshold pressure  of the fluid may vary 
significantly in this frequency range. 

Further effort is needed to determine which of the above possibilities, 
or  other contributing factor not listed here ,  is responsible for  the 
behavior of the observed experimental system in the region close to 
*a = .IT. 

In summary, it was concluded that, except for the surface 
phenomena occurring in the low frequency range, the locations of 
initial bubble formations were predicted reasonably well. 
predicted threshold acceleration levels produced results corresponding 
to the measured values with respect to order of magnitude a s  well as 
a significant portion of the general qualitative trends. 
correlation with experimental data w a s  obtained a t  low frequencies 

The 

Very good 

c 
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c 

when the analytical prediction was based on a threshold pressure  
equal to the fluid saturation pressure. A t  higher frequencies, however, 
the quantitative predictions f rom the analytical model were dependent , 
upon the uncertain choice of an appropriate value of threshold pressure,  
and the prediction of pressure  amplitudes w a s  not a s  accurate. Only 
one very  distinct trend exhibited by the measured data w a s  not predicted 
by the analytical model. 

CONCLUSIONS AND RECOMMENDATIONS 

In this study many of the experimental observations correlated 
reasonably well with results obtained from an analysis of the system. 
Certain discrepancies remain, however, and to explain them additional 
experimental data as w e l l  as more extensive analyses a r e  required. 

15 



APPENDIX A 

DERIVATION OF EQUATION OF MOTION 

Consider an element of the system as shoun in FIG 9. A 
force balance on the cylindrical wa l l  gives 

PDdx = 2usdx .  (A11 

F o r  an elastic wa l l ,  u = E E ,  where E is the circumferential strain of 
the wall. 

P, then.€ = - = - AD 

If AD represents the increase in diameter due to pressure,  

Equation (Al)  now can be rewritten as 
ITD DO 

D2 P AD =- 2sE 

Now consider a thin cylindrical slice of fluid of length, I ,  and volume, 

V = --'I. 4 
element due to pressure,  P, is given by 

TT F o r  small  deformations the change in volume of the fluid 

Combining equations (A2) and (A3) gives the longitudinal strain of the 
fluid a s  

P - - -  - - AI 
E X - - -  

I EX 

where Ex, the effective longitudinal modulus of elasticity of the fluid 
column, is defined a s  

Thus, the longitudinal stiffness of the column is dependent upon the 
stiffness, B, of the fluid and the stiffness of the cylindrical container, 

r 

16 



4 

S 
m - E. D 

less  than unity in general and is given by - 
The ratio of the longitudinal stiffness to the fluid stiffness is  

Ex 

= =[ 1 t ;;*) ] B 

* The displacement of a cross-sectional fluid element from 
its equilibrium position under zero load is Y(x, t). The local longi- 

tudinal s t ra in  is E~ E - a y  and in accordance with equation (A4), the 

. The instantaneous velocity of pressure  of the fluid is P = - Ex- 

the element is - ay 
written as 

a y  
ax 

ax ' 

Newton's l a w  is a2y  
T' ' 

and its acceleration is a t  ' 

a2 Y 
a$ PA dx - = F, 

where F, is the net force  on the element in the x direction. 
10 shows the forces  acting on a fluid element. 
x, the diameter of the c-ylindrical container may vary also, and a 
longitudinal component of force i s  generated by the tapered cylindrical 

FIGURE 
Since P may vary with 

wall. This longitudinal component i s  PnD dx s in  a. Now, s in  (Y = 
1 a dx 1 aA dx - -  2ex)(dz) - -a - - -  .s(ax)(x) ,. so the tube w a l l  longitudinal component 

. 

. 

b e c o m e s - P ( g )  dx. The net force in the x direction is 

Fx= pgAdx + P A  - [ P A  t ( E  P - + A E ) d x ]  ax 
(gravity) (force on (force on 

upper surface) lower surface) 

+ aA P- ax 
J 

(longitudinal component of 
force from the tube wall) 

a y  
ax 
- into equation (A7) and inserting the resulting Entering P = - 

expression for F, into equation (A6) gives 

(inertia effect) (elastic force) (gravity force) . 
17 



This is the wave equation where c 
velocity of the system. 

is the longitudinal wave 

Note that the wave velocity, C ,  is considerably less  than the 

fluid acoustic velocity (a = E ) w h e n  the fluid stiffness, By is  signifi- 
- 
S 

cantly greater than the wall stiffness, - E. 

inserting the expression fo r  E, into the relation for  C which gives 

This can be seen by D 

= ,+ 1 t -  



APPENDIX B 

. 

FURTHER DETAILS OF SYSTEM BEHAVIOR 

Dissipation of energy can occur in the fluid due to viscosity 
and in  the cylindrical wall due to viscoelastic behavior. 
encountered in this investigation, the fluid viscous boundary layer i s  

very thin,' The core  velocity, U, is equivalent to %in t e rms  of 

previously used notation. 

F o r  conditions 

a t  
It is valid to neglect convective te rms  (of 

comparison with local accelerations (of the order  

where Um is the maximum core velocity amplitude in the system. 
TC (g) X = C, the above inequality can be rewritten a s  Um << - 

Since 

2 -  

The resul t  of the order of magnitude analysis car r ied  out above 
implies that convective momentum effects in the fluid a r e  unimportant if 
the longitudinal wave velocity is considerably greater  in magnitude than 
the longitudinal fluid velocity oscillations, 
fulfilled in all of the experiments carr ied out. 
mation the boundary layer (Ref. 13) momentum equation is 

This condition w a s  easily 
In view of this approxi- 

az u - = -  a U  au,  - 
a t  a t  a+ 

where u is the longitudinal velocity in the boundary layer,  

The oscillation boundary layer thickness, o r  depth of 
penetration (Ref. 13) as it is sometimes referred to, is calculated f rom 

60 =p For methanol the viscosity at room temperature is  about 

0.55 centipoises. 
viscosity u is 0.74 x 
sion for  6 o  gives 

w 
Since the density is 50 lb/f t3  (Ref. 9), the kinematic 

Entering this value into the expres- ft?/sec. 
h0 = 0.001 inch for  a frequency of 170 cps. 

19 



Now, the oscillating portion of the longitudinal core  motion is 
iwM::eiwt . In a s imilar  

i w  t ay1 written as Y1 (x, t) = M':(x)e 

manner the boundary layer velocity f o r  a given value of x is written a s  

u = N"(y)eiwt. 

. Also, U = --- a t  - 

Equation (B l ) ,  written in complex notation, is 

The solution is 

N" = iwM" t C1 exp ( - y e )  t C2 exp ( y e ) .  

As y becomes largey N" must approach iwM", so C2 = 0. If the longi- 
tudinal moticjn of the cylindrical w a l l  follows that of the base, then 

the wa l l  velocity is given by iwYLe 
is the same, and 
determined, equation (B3)  is rewritten as 

iot . The fluid velocity at the wall 
therefore, iwM:: t C1 = iwYL. With C1 and C, 

where 60 is the oscillation boundary layer thickness f l .  
W . 

The wa l l  shear  s t r e s s ,  T, is obtained by differentiating 
au 
a Y  

equation (B4) and evaluating -p - at y = 0. The result, written in 

complex notation, is 

Equation (A7) i s  now modified to include the shear  force  acting on the 
fluid at the wall. The net force becomes 

The last te rm in this equation is obtained f rom equation (B5). 

To account for viscoelastic behavior, the complex modulus 
of elasticity (Ref. 12) of the cylinder w a l l  is written as E':' = E '  + iE". 

2 0  



F o r  small  amounts of damping the real  portion is essentially the same 
as the ordinary modulus of elasticity. 

+ i s  the loss  factor 7. 

s t ra in  are obtained from the development given in Appendix A, but with 
E replaced by E* to account fo r  the damping effect. 

In this case E* = E( 1 t i+) where 
E" 
E The oscillating components of stress and 

Equation (A5) is rewritten a s  

Ex* B B =(=)Ex 1 + ir+ . 
1 +  

f rom equation (B The oscillating component of force is obtainel . ) and 
is equated to the inertia te rm as in equation (A6). With Y1 (x, t) 

i w  t expressed as M*(x)e , the result  is 

pA dx(iw)2M* = -A dx- ( -Ex"- ::)+ T*TD dx . dx 

Inserting T* f rom equation (B5) gives 

. .  
Ex* - , the complex wave velocity of the system. where C * =  

that the last t e rm is negligibly small when 

is the same order  of magnitude as YL. 
in this investigation, 3 w a s  of the order of 

therefore,  that the damping effect  due to  viscous fluid shear  a t  the 
w a l l  w a s  very  small.' 
is neglected. The solution for the complex pressure  amplitude follows 
essentially the same procedure as w a s  used in obtaining equation (11) . 
The result is identical in  form and is written as 

Note 

D 
dT 

<< 1, provided that M" 

F o r  experiments car r ied  out 

It is concluded, 
D 

F o r  this reason the last t e rm in equation (B9) 

There is another source of energy dissipation associated with 
viscous action in the core  of the fluid due to its periodic compression 
and expansion. 
magnitude even smaller than that of the w a l l  friction. 

In the present study this effect w a s  found to have a 
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i w  t In this formulation the oscillating pressure  is given by AP"e 

is the dimensionless complex frequency defined as 5. 
expression given in equation (B7), it can be shown that R"' - 

. a': 
WL 

Using the 
1 t ir4 

- 

X 
A plot of equation (B11) is  shown in FIG 11 for - = 0. 5 with L 

r = 0. 10 and 4 = 0.05. Predicted pressure  amplitudes at the resonant 
frequencies a r e  large,  but finite. The limited amount of experimental 
data shown correlates  reasonably well with the prediction. 

equation ( 1  11, and infinite resonant pressure  amplitudes a r e  predicted. 
This unacceptable result  i l lustrates the necessity for including d iss i -  
pation effects in any complete analysis of the system. Otherwise, 
realist ic predictions in the resonant ranges of frequency cannot be 
obtained. 

In the 
I absence of energy dissipation (4,  = 0) equation (B11) i s  identical to 

To obtain the threshold acceleration levels, it is possible to 
develop relations equivalent to equations (14) and (15) that include 
dissipation effects. It w a s  found, however, that a more straight- 
forward procedure could be car r ied  out using a computer printout of 
equation (B11). 
s imilar  t o  that of equation (10): 

The expression f o r  pressure  is f i r s t  written in a form 

The magnitude of the pressure  oscillations is obtained from 
equation (B10) and is written as 

1 t i4 1 t i4 

F o r  the experimental system used in making the pressure  measure-  
ments, r w a s  approximately 0. 10. Although the damping properties 
of Plexiglas a r e  subject to considerable variation, a loss factor of 
0.05 appears to be a reasonable value (Ref. 15) at room temperature 
for the frequency range investigated. 

t 
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. 

1 

~ 

. 
The minimum pressure  in the system is equal to PT at the threshold 
condition. This results in 

X 
where the - value corresponds to the location of minimum pressure. 

Rearrangement of equation (B13) gives 
L 

. 

G =  
- 
P, pT> . 

The threshold condition corresponds to the position producing the 

lowest value of G from equation (B14). F o r ( s ) ( l  - 2) >> 1, this 
pgL 

occurs very  close to the location where the denominator of equation 

(B14) is a maximum. If this position is  denoted 

GT 

a 
m 

then 

Inspection of a computer printout of equation (B11) gave the 
IAPsI 

maximum values of I p g L I  andthe(:) locations. Inserting these 
G m 

values into equation (B15) gave the corresponding threshold accelera- 
tion levels. The result  of this prediction is shown in F I G  12 for  

23 



(z)(i - ?)= 15, the same value that was used in plotting the 

resul t  shown in FIG 8. 
accounted for (r = 0.10, + = 0.05). 
resonance a r e  non-zero in agreement with the behavior of the experi- 
mental data. Despite the improvement, predicted GT values a r e  still  
low at resonance. Also, the predicted values remain somewhat greater  
than the measured values in the range of G? = 2.5 to 4. 
realist ic values of the properties of Plexiglas, accounting for the 
presence of energy dissipation does not remove the discrepancy in 
this frequency range (FIG 8 and 12). 

However, in this case  energy dissipation is  
The predicted CT values a t  

Thus, based on 

In this appendix certain improvements were obtained in the 
The predicted results by accounting for viscous en.ergy dissipation. 

most significant improvements, with respect to the simplified analyt- 
ical  model, were obtained a t  the near resonant frequencies. Certain 
discrepancies between predicted and measured resul ts ,  somewhat 
removed from the fundamental longitudinal resonances of the system, 
remain to be explained. 

c 

24 



c 

x = L  

c 
X 

Cylind rical Wall 
Young's Modulus, I 
Thickness, s 

Gravitational 
Field, g I 

Base Motion 
.iwt 

L 
I 

FIG. 1 LONGITUDINAL VIBRATION O F  A F L E X I B L E  
LIQUID-FILLED CYLINDER 
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FIGURE 2. BUBBLE FORMATIONS IN A VIBRATING LIQUID. 
(Reference 1) 
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(b) n= 3n/2 

FIGURE 5. OSCILLOSCOPE DISPLAY O F  OSCILLATING PRESSURES. 
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F I G U R E  6a. INITIAL BUBBLE FORMATIONS IN A VIBRATED 
METHANOL COLUMN (Q = n /4). 
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FIGURE 6b. GROWTH O F  BUBBLE FORMATIONS IN A VIBRATED 
METHANOL COLUMN (n  = n /4. 



FIGURE 6c .  INITIAL BUBBLE FORMATIONS IN A VIBRATED 
METHANOL COLUMN (n = n / 2 .  
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FIGURE 6d. INITIAL BUBBLE FORMATIONS I N  A VIBRATED 
METHANOL COLUMN ($2 = n) .  
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FIGURE 6 e .  INITIAL BUBBLE FORMATIONS IN A VIBRATED 
METHANOL COLUMN ( R  = 3 n/2).  
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FIGURE 6f. INITIAL BUBBLE FORMATIONS IN A VIBRATED 
METHANOL COLUMN (a= 3 n / 2 )  
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-Analytical: Equation (B- 11)  
r = 0.10, 4 = 0.05 

0 Experimental 

0 1 2 3 4 s z  6 7 8 

EFFECT OF FREQUENCY ON PRESSURE AMPLITUDE AT x / L  = 0.5 F I G  11 
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